metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Pyrimidine-2-thiolato- $\kappa^2 N$,S)bis(triphenylphosphine-*κP*)copper(I)

Cheng-Xiang Ruan* and Wen-Juan Shi

Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China Correspondence e-mail: ruancx2005@126.com

Received 16 August 2007; accepted 18 August 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.043; wR factor = 0.113; data-to-parameter ratio = 17.4.

The pyrimidine-2-thiolate ligand in the title copper(I) complex, $[Cu(C_4H_3N_2S)(C_{18}H_{15}P)_2]$, chelates the metal atom through the exocyclic S atom and one heterocyclic N atom. Two triphenylphosphine ligands complete the approximately tetrahedral coordination geometry about the Cu¹ atom. In the crystal structure, intermolecular C-H···S hydrogen bonds connect the mononuclear complexes into a two-dimensional network.

Related literature

For general background, see: Krebs & Henkel (1991). For details of metal complexes of pyrimidine-2-thiolate, see: Cookson & Tiekink (1993); Cotton & Ilslev (1982); Su et al. (1999); Yap & Jensen (1992); Zhao et al. (2001). For details of the related thiones, see Karagiannidis et al. (1990); Lecomte et al. (1989). For a related structure, see: Li et al. (2004).

Experimental

Crystal data $[Cu(C_4H_3N_2S)(C_{18}H_{15}P)_2]$ $M_r = 699.22$

Triclinic, P1 a = 9.3092 (6) Å

b = 11.0636 (7) A	Z = 2
c = 18.8384 (12) Å	Mo $K\alpha$ radiation
$\alpha = 93.181 \ (1)^{\circ}$	$\mu = 0.80 \text{ mm}^{-1}$
$\beta = 91.912 \ (2)^{\circ}$	T = 295 (2) K
$\gamma = 113.810 \ (2)^{\circ}$	$0.28 \times 0.25 \times 0.20$ mm
$V = 1769.1 (2) \text{ Å}^3$	
Data collection	
Bruker APEX area-detector	14456 measured reflect
diffractomator	7227 independent refle

diffractometer	7227 independent reflections
Absorption correction: multi-scan	5598 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.024$
$T_{\min} = 0.808, \ T_{\max} = 0.857$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	102 restraints
$wR(F^2) = 0.113$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.41 \text{ e} \text{ Å}^{-3}$
7227 reflections	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$
415 parameters	

reflections

Table 1 Hydrogen-bond geometry (Å, °).

 $D - \mathbf{H} \cdot \cdot \cdot A$ D-H $D - H \cdot \cdot \cdot A$ $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $C6-H6 \cdot \cdot \cdot S1$ 0.93 2.83 3.661 (3) 150 $C13-H13\cdots S1^i$ 0.93 2 73 3.613 (4) 159

Symmetry code: (i) x - 1, y, z.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

The authors thank Jiangxi Science and Technology Normal University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2336).

References

- Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cookson, P. D. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 259-263.
- Cotton, F. A. & Ilsley, W. H. (1982). Inorg. Chim. Acta, 59, 213-217.
- Karagiannidis, P., Hadjikakou, S. K., Aslanidis, P. & Hountas, A. (1990). Inorg. Chim. Acta, 178, 27-34.

Krebs, B. & Henkel, G. (1991). Angew. Chem. Int. Ed. Engl. 30, 769-771.

- Lecomte, C., Skoulika, S., Aslanidis, P., Karagiannidis, P. & Papastefanou, S. (1989). Polyhedron, 8, 1103-1109.
- Li, D., Luo, Y.-F., Wu, T. & Ng, S. W. (2004). Acta Cryst. E60, m726-m727.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Su, W.-P., Cao, R., Hong, M.-C., Wong, W.-T. & Lu, J.-X. (1999). Inorg. Chem. Commun. 2, 241-243.
- Yap, G. P. A. & Jensen, C. M. (1992). Inorg. Chem. 31, 4823-4828.
- Zhao, Y.-J., Hong, M.-C., Liang, Y.-C., Cao, R., Li, W.-J., Weng, J.-B. & Lu, S.-F. (2001). Chem. Commun. pp. 1020-1021.

Acta Cryst. (2007). E63, m2412 [doi:10.1107/S1600536807040925]

(Pyrimidine-2-thiolato- $\kappa^2 N, S$)bis(triphenylphosphine- κP)copper(I)

C.-X. Ruan and W.-J. Shi

Comment

Heterocyclic thiones have attracted much attention as ligands in metal complexes because of their relevance in biological systems (Krebs & Henkel, 1991). Pyrimidine-2-thione and the corresponding thiolate can adopt different coordination modes to yield a variety of coordination complexes (Cookson & Tiekink, 1993; Cotton & Ilsley, 1982; Karagiannidis *et al.*, 1990; Lecomte *et al.*, 1989; Su *et al.*, 1999; Yap & Jensen, 1992; Zhao *et al.*, 2001).

In the earlier study on the complex of copper(I) ion with both phosphine and a heterocyclic mercaptan, Li *et al.* have found that the heterocyclic thione ligands exist in the thione form in the adduct, the ligands coordinate in a monodentate fashion through the doubly bonded S atom (Li *et al.*, 2004). In this work, the deprotonated ligand coordinates to the copper(I) ion in a chelate manner through an endocyclic N atom and the exocyclic S atom, giving the title complex (Fig. 1). The Cu atom exists in a tetrahedral environment.

A two-dimensional supramolecular network (Fig. 2) is formed by the intermolecular C—H···S hydrogen bonds [H···S 2.73 (3), 2.83 (2) Å; C—H···S 158.6 (1), 149.6 (1) °].

Experimental

Sodium pyrimidine-2-thiolate was prepared through the reaction of pyrimidine-2-thione with sodium metal in dry tetrahydrofuran. To a stirred solution of $Cu(NO_3)_2$ ·3H₂O (60.9 mg, 0.25 mmol) in methanol (5 ml) was added a methanol solution (5 ml) of sodium pyrimidine-2-thiolate (34.0 mg, 0.25 mmol) and a precipitate formed immediately. The resulting brown powder was added to a stirred solution of triphenylphosphine (130.2 mg, 0.5 mmol) in acetone (7 ml), forming a clear yellow solution. This was left standing at room temperature. Colorless block-shaped crystals of the title compound were obtained after two months. Yield: 55.6 mg (32%).

Refinement

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic H-atoms.

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level, and H atoms as spheres of arbitrary radius.

Fig. 2. Packing diagram showing the C—H····S hydrogen bonding interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

(Pyrimidine-2-thiolato- $\kappa^2 N, S$)bis(triphenylphosphine- κP)copper(I)

Crystal data	
[Cu(C ₄ H ₃ N ₂ S)(C ₁₈ H ₁₅ P) ₂]	Z = 2
$M_r = 699.22$	$F_{000} = 724$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.313 {\rm ~Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
<i>a</i> = 9.3092 (6) Å	Cell parameters from 3662 reflections
<i>b</i> = 11.0636 (7) Å	$\theta = 2.2 - 23.3^{\circ}$
c = 18.8384 (12) Å	$\mu = 0.80 \text{ mm}^{-1}$
$\alpha = 93.181 \ (1)^{\circ}$	T = 295 (2) K
$\beta = 91.912 \ (2)^{\circ}$	Block, colourless
$\gamma = 113.810 \ (2)^{\circ}$	$0.28\times0.25\times0.20~mm$
$V = 1769.1 (2) \text{ Å}^3$	

Data collection

Bruker APEX area-detector diffractometer	7227 independent reflections
Radiation source: fine-focus sealed tube	5598 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 295(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$

(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.808, \ T_{\max} = 0.857$	$k = -13 \rightarrow 13$
14456 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_o^2) + (0.0585P)^2 + 0.2219P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
7227 reflections	$\Delta \rho_{max} = 0.41 \text{ e} \text{ Å}^{-3}$
415 parameters	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$
102 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.69666 (4)	0.54945 (3)	0.719137 (16)	0.04441 (12)
S1	0.86486 (8)	0.44086 (7)	0.68664 (4)	0.0569 (2)
P1	0.63061 (8)	0.52595 (7)	0.83325 (4)	0.04319 (17)
P2	0.73004 (8)	0.72462 (6)	0.65674 (4)	0.04140 (17)
N1	0.5631 (3)	0.3595 (2)	0.66490 (11)	0.0485 (5)
N2	0.6660 (4)	0.1983 (3)	0.63669 (15)	0.0736 (8)
C1	0.6832 (3)	0.3203 (3)	0.65968 (13)	0.0487 (6)
C2	0.4191 (4)	0.2706 (3)	0.64506 (17)	0.0679 (8)
H2	0.3348	0.2951	0.6477	0.082*
C3	0.3917 (5)	0.1435 (4)	0.6207 (2)	0.0885 (12)
Н3	0.2912	0.0809	0.6067	0.106*
C4	0.5206 (6)	0.1146 (4)	0.6183 (2)	0.0921 (12)
H4	0.5046	0.0287	0.6024	0.110*
C5	0.5714 (3)	0.3579 (3)	0.86245 (14)	0.0492 (6)

C6	0.6564 (4)	0.2863 (3)	0.84107 (17)	0.0695 (9)
H6	0.7418	0.3244	0.8133	0.083*
C7	0.6150 (6)	0.1576 (4)	0.8607 (2)	0.0943 (12)
H7	0.6732	0.1099	0.8468	0.113*
C8	0.4865 (6)	0.1014 (4)	0.9011 (2)	0.0940 (13)
H8	0.4569	0.0149	0.9136	0.113*
C9	0.4043 (5)	0.1710 (3)	0.92248 (19)	0.0798 (10)
Н9	0.3194	0.1328	0.9505	0.096*
C10	0.4445 (4)	0.2988 (3)	0.90314 (16)	0.0622 (8)
H10	0.3855	0.3453	0.9177	0.075*
C11	0.4607 (3)	0.5631 (3)	0.85071 (14)	0.0463 (6)
C12	0.3271 (3)	0.4996 (3)	0.80554 (18)	0.0672 (8)
H12	0.3264	0.4394	0.7689	0.081*
C13	0.1948 (4)	0.5252 (4)	0.8146 (2)	0.0862 (11)
H13	0.1045	0.4798	0.7851	0.103*
C14	0.1963 (4)	0.6172 (4)	0.8668 (2)	0.0851 (11)
H14	0.1083	0.6362	0.8719	0.102*
C15	0.3260 (4)	0.6802 (4)	0.9110 (2)	0.0783 (10)
H15	0.3267	0.7419	0.9468	0.094*
C16	0.4579 (3)	0.6535 (3)	0.90348 (16)	0.0588 (7)
H16	0.5461	0.6972	0.9345	0.071*
C17	0.7791 (3)	0.6296 (3)	0.90186 (14)	0.0457 (6)
C18	0.8176 (3)	0.5834 (3)	0.96336 (15)	0.0600(7)
H18	0.7650	0.4946	0.9719	0.072*
C19	0.9331 (4)	0.6677 (4)	1.01194 (18)	0.0782 (10)
H19	0.9580	0.6352	1.0529	0.094*
C20	1.0117 (4)	0.7987 (4)	1.0007 (2)	0.0820(11)
H20	1.0899	0.8552	1.0336	0.098*
C21	0.9738 (4)	0.8456 (3)	0.9405 (2)	0.0796 (10)
H21	1.0260	0.9348	0.9328	0.095*
C22	0.8588 (3)	0.7619 (3)	0.89089 (16)	0.0610 (8)
H22	0.8350	0.7951	0.8499	0.073*
C23	0.8644 (3)	0.8830 (2)	0.70027 (14)	0.0453 (6)
C24	1.0025 (3)	0.8879 (3)	0.73323 (17)	0.0609 (8)
H24	1.0219	0.8116	0.7327	0.073*
C25	1.1113 (4)	1.0045 (4)	0.7668 (2)	0.0801 (10)
H25	1.2046	1.0071	0.7876	0.096*
C26	1.0822 (5)	1.1159 (4)	0.7695 (2)	0.0862 (11)
H26	1.1542	1.1937	0.7935	0.103*
C27	0.9471 (5)	1.1137 (3)	0.7370 (2)	0.0795 (10)
H27	0.9285	1.1903	0.7383	0.095*
C28	0.8389 (4)	0.9980 (3)	0.70238 (17)	0.0628 (8)
H28	0.7478	0.9972	0.6802	0.075*
C29	0.8153 (3)	0.7232 (2)	0.57102 (14)	0.0481 (6)
C30	0.9305 (4)	0.8340 (3)	0.54663 (16)	0.0670 (7)
H30	0.9631	0.9150	0.5731	0.080*
C31	0.9983 (4)	0.8262 (3)	0.48327 (16)	0.0773 (8)
H31	1.0765	0.9019	0.4679	0.093*
C32	0.9520 (4)	0.7095 (3)	0.44330 (17)	0.0757 (8)

H32	0.9956	0.7051	0.4000	0.091*
C33	0.8406 (5)	0.5990 (3)	0.46774 (18)	0.0904 (10)
H33	0.8091	0.5183	0.4410	0.108*
C34	0.7732 (4)	0.6044 (3)	0.53167 (16)	0.0789 (9)
H34	0.6992	0.5274	0.5480	0.095*
C35	0.5498 (3)	0.7466 (2)	0.63579 (14)	0.0464 (6)
C36	0.4941 (4)	0.7507 (3)	0.56753 (16)	0.0604 (7)
H36	0.5546	0.7508	0.5292	0.072*
C37	0.3480 (4)	0.7547 (3)	0.55584 (19)	0.0726 (9)
H37	0.3111	0.7566	0.5096	0.087*
C38	0.2587 (4)	0.7559 (3)	0.6109 (2)	0.0772 (10)
H38	0.1599	0.7564	0.6026	0.093*
C39	0.3152 (4)	0.7562 (4)	0.6786 (2)	0.0886 (11)
H39	0.2562	0.7606	0.7168	0.106*
C40	0.4580 (4)	0.7501 (4)	0.69101 (18)	0.0727 (9)
H40	0.4935	0.7483	0.7375	0.087*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0511 (2)	0.04317 (19)	0.0439 (2)	0.02402 (15)	0.00632 (14)	0.00292 (14)
S1	0.0506 (4)	0.0616 (4)	0.0663 (5)	0.0324 (4)	0.0010 (3)	-0.0061 (4)
P1	0.0432 (4)	0.0455 (4)	0.0410 (4)	0.0181 (3)	0.0044 (3)	0.0025 (3)
P2	0.0434 (4)	0.0419 (4)	0.0441 (4)	0.0224 (3)	0.0061 (3)	0.0038 (3)
N1	0.0483 (13)	0.0478 (13)	0.0477 (13)	0.0185 (11)	-0.0026 (10)	0.0012 (10)
N2	0.091 (2)	0.0479 (15)	0.085 (2)	0.0330 (15)	0.0004 (16)	-0.0061 (14)
C1	0.0646 (17)	0.0501 (16)	0.0392 (14)	0.0313 (14)	0.0034 (12)	0.0029 (12)
C2	0.0587 (19)	0.069 (2)	0.066 (2)	0.0175 (17)	-0.0041 (16)	-0.0010 (17)
C3	0.080 (3)	0.063 (2)	0.090 (3)	-0.001 (2)	-0.007 (2)	-0.008 (2)
C4	0.112 (3)	0.051 (2)	0.103 (3)	0.025 (2)	-0.001 (3)	-0.009 (2)
C5	0.0587 (17)	0.0444 (15)	0.0402 (14)	0.0170 (13)	-0.0016 (12)	0.0023 (11)
C6	0.090 (2)	0.064 (2)	0.064 (2)	0.0401 (18)	0.0112 (17)	0.0156 (16)
C7	0.142 (4)	0.073 (2)	0.088 (3)	0.063 (3)	0.002 (3)	0.013 (2)
C8	0.128 (4)	0.054 (2)	0.082 (3)	0.019 (2)	-0.010 (3)	0.0170 (19)
C9	0.083 (2)	0.058 (2)	0.073 (2)	0.0021 (19)	-0.0011 (19)	0.0115 (18)
C10	0.0599 (18)	0.0561 (18)	0.0577 (18)	0.0103 (15)	0.0012 (15)	0.0053 (14)
C11	0.0391 (14)	0.0517 (15)	0.0470 (15)	0.0164 (12)	0.0065 (11)	0.0075 (12)
C12	0.0494 (18)	0.075 (2)	0.071 (2)	0.0196 (16)	-0.0019 (15)	-0.0011 (17)
C13	0.0455 (19)	0.112 (3)	0.093 (3)	0.023 (2)	-0.0074 (18)	0.023 (2)
C14	0.056 (2)	0.109 (3)	0.111 (3)	0.050 (2)	0.023 (2)	0.036 (3)
C15	0.075 (2)	0.091 (3)	0.088 (3)	0.052 (2)	0.025 (2)	0.009 (2)
C16	0.0509 (17)	0.0708 (19)	0.0595 (18)	0.0298 (15)	0.0061 (14)	0.0011 (15)
C17	0.0368 (13)	0.0563 (16)	0.0443 (15)	0.0190 (12)	0.0064 (11)	0.0017 (12)
C18	0.0527 (17)	0.0684 (19)	0.0546 (18)	0.0200 (15)	0.0019 (14)	0.0086 (15)
C19	0.068 (2)	0.101 (3)	0.058 (2)	0.028 (2)	-0.0135 (17)	0.0042 (19)
C20	0.060 (2)	0.090 (3)	0.076 (2)	0.014 (2)	-0.0164 (18)	-0.016 (2)
C21	0.076 (2)	0.061 (2)	0.084 (3)	0.0115 (18)	-0.002 (2)	-0.0094 (19)
C22	0.0618 (19)	0.0542 (17)	0.0578 (18)	0.0147 (15)	-0.0005 (15)	0.0020 (14)

C23	0.0466 (15)	0.0428 (14)	0.0474 (15)	0.0184 (12)	0.0081 (12)	0.0050 (11)
C24	0.0468 (16)	0.0636 (19)	0.073 (2)	0.0239 (15)	0.0011 (15)	0.0033 (16)
C25	0.0542 (19)	0.084 (3)	0.086 (3)	0.0127 (18)	-0.0102 (17)	0.003 (2)
C26	0.084 (3)	0.060 (2)	0.083 (3)	0.000 (2)	-0.002 (2)	-0.0084 (19)
C27	0.103 (3)	0.0465 (18)	0.086 (3)	0.0284 (19)	0.002 (2)	-0.0038 (17)
C28	0.072 (2)	0.0522 (17)	0.068 (2)	0.0309 (16)	-0.0038 (16)	-0.0023 (15)
C29	0.0581 (14)	0.0497 (13)	0.0487 (14)	0.0332 (11)	0.0119 (11)	0.0103 (11)
C30	0.0793 (18)	0.0625 (15)	0.0639 (16)	0.0313 (14)	0.0215 (14)	0.0124 (13)
C31	0.090 (2)	0.0798 (17)	0.0699 (18)	0.0386 (16)	0.0323 (15)	0.0246 (14)
C32	0.104 (2)	0.0863 (18)	0.0624 (17)	0.0607 (16)	0.0352 (15)	0.0200 (14)
C33	0.140 (2)	0.0690 (17)	0.0681 (18)	0.0476 (17)	0.0362 (17)	0.0004 (15)
C34	0.118 (2)	0.0542 (15)	0.0610 (17)	0.0294 (15)	0.0303 (16)	0.0032 (13)
C35	0.0458 (14)	0.0447 (14)	0.0530 (15)	0.0222 (12)	0.0049 (12)	0.0072 (12)
C36	0.0608 (17)	0.0711 (19)	0.0539 (17)	0.0329 (15)	-0.0031 (14)	-0.0019 (15)
C37	0.0632 (19)	0.084 (2)	0.074 (2)	0.0354 (18)	-0.0173 (17)	0.0002 (18)
C38	0.0539 (18)	0.086 (2)	0.103 (3)	0.0386 (17)	0.0008 (18)	0.022 (2)
C39	0.074 (2)	0.131 (3)	0.095 (2)	0.071 (2)	0.0334 (19)	0.040 (2)
C40	0.071 (2)	0.113 (3)	0.0630 (19)	0.0626 (19)	0.0187 (16)	0.0266 (18)

Geometric parameters (Å, °)

2.139 (2)	C17—C18	1.385 (4)
2.2417 (7)	C18—C19	1.376 (4)
2.2557 (7)	C18—H18	0.9300
2.4023 (7)	C19—C20	1.368 (5)
1.715 (3)	С19—Н19	0.9300
1.823 (3)	C20—C21	1.365 (5)
1.826 (3)	C20—H20	0.9300
1.836 (3)	C21—C22	1.384 (4)
1.820 (3)	C21—H21	0.9300
1.824 (3)	C22—H22	0.9300
1.825 (3)	C23—C28	1.383 (4)
1.329 (4)	C23—C24	1.389 (4)
1.357 (3)	C24—C25	1.379 (4)
1.315 (5)	C24—H24	0.9300
1.338 (3)	C25—C26	1.364 (5)
1.373 (5)	C25—H25	0.9300
0.9300	C26—C27	1.370 (5)
1.363 (5)	C26—H26	0.9300
0.9300	C27—C28	1.379 (4)
0.9300	С27—Н27	0.9300
1.379 (4)	C28—H28	0.9300
1.380 (4)	C29—C34	1.373 (3)
1.393 (5)	C29—C30	1.378 (3)
0.9300	C30—C31	1.383 (3)
1.382 (6)	С30—Н30	0.9300
0.9300	C31—C32	1.357 (3)
1.342 (6)	C31—H31	0.9300
0.9300	C32—C33	1.361 (4)
	2.139 (2) 2.2417 (7) 2.2557 (7) 2.4023 (7) 1.715 (3) 1.823 (3) 1.826 (3) 1.826 (3) 1.820 (3) 1.824 (3) 1.825 (3) 1.329 (4) 1.357 (3) 1.315 (5) 1.338 (3) 1.373 (5) 0.9300 1.363 (5) 0.9300 1.379 (4) 1.393 (5) 0.9300 1.382 (6) 0.9300 1.342 (6) 0.9300	2.139(2) $C17-C18$ $2.2417(7)$ $C18-C19$ $2.2557(7)$ $C18-H18$ $2.4023(7)$ $C19-C20$ $1.715(3)$ $C19-H19$ $1.823(3)$ $C20-C21$ $1.826(3)$ $C20-H20$ $1.836(3)$ $C21-C22$ $1.820(3)$ $C21-H21$ $1.824(3)$ $C22-H22$ $1.825(3)$ $C23-C28$ $1.329(4)$ $C23-C24$ $1.357(3)$ $C24-C25$ $1.315(5)$ $C24-H24$ $1.338(3)$ $C25-C26$ $1.373(5)$ $C25-H25$ 0.9300 $C26-C27$ $1.363(5)$ $C26-H26$ 0.9300 $C27-H27$ $1.379(4)$ $C28-H28$ $1.380(4)$ $C29-C34$ $1.393(5)$ $C29-C34$ $1.382(6)$ $C30-H30$ 0.9300 $C30-C31$ $1.342(6)$ $C31-H31$ 0.9300 $C32-C33$

C9—C10	1.382 (4)	С32—Н32	0.9300
С9—Н9	0.9300	C33—C34	1.386 (3)
C10—H10	0.9300	С33—Н33	0.9300
C11—C16	1.379 (4)	C34—H34	0.9300
C11—C12	1.386 (4)	C35—C40	1.377 (4)
C12—C13	1.384 (5)	C35—C36	1.380 (4)
C12—H12	0.9300	C36—C37	1.390 (4)
C13—C14	1.373 (5)	С36—Н36	0.9300
С13—Н13	0.9300	C37—C38	1.353 (5)
C14—C15	1.351 (5)	С37—Н37	0.9300
C14—H14	0.9300	C38—C39	1.362 (5)
C15—C16	1.384 (4)	C38—H38	0.9300
C15—H15	0.9300	C39—C40	1.372 (4)
C16—H16	0.9300	С39—Н39	0.9300
C17—C22	1.379 (4)	C40—H40	0.9300
N1—Cu1—P2	115.81 (6)	C22—C17—P1	117.5 (2)
N1—Cu1—P1	104.82 (6)	C18—C17—P1	124.2 (2)
P2—Cu1—P1	126.43 (3)	C19—C18—C17	120.6 (3)
N1—Cu1—S1	69.28 (6)	C19—C18—H18	119.7
P2—Cu1—S1	113.43 (3)	C17—C18—H18	119.7
P1—Cu1—S1	112.70 (3)	C20-C19-C18	120.8 (3)
C1—S1—Cu1	78.83 (9)	С20—С19—Н19	119.6
C11—P1—C17	103.64 (12)	С18—С19—Н19	119.6
C11—P1—C5	102.95 (13)	C21—C20—C19	119.2 (3)
C17—P1—C5	103.71 (12)	C21—C20—H20	120.4
C11—P1—Cu1	112.67 (9)	С19—С20—Н20	120.4
C17—P1—Cu1	116.99 (8)	C20—C21—C22	120.8 (3)
C5—P1—Cu1	115.25 (9)	C20—C21—H21	119.6
C23—P2—C35	104.69 (12)	C22—C21—H21	119.6
C23—P2—C29	102.33 (12)	C17—C22—C21	120.4 (3)
C35—P2—C29	104.72 (12)	C17—C22—H22	119.8
C23—P2—Cu1	114.48 (9)	C21—C22—H22	119.8
C35—P2—Cu1	114.47 (9)	C28—C23—C24	118.2 (3)
C29—P2—Cu1	114.79 (8)	C28—C23—P2	124.7 (2)
C2—N1—C1	117.5 (3)	C24—C23—P2	117.1 (2)
C2—N1—Cu1	144.9 (2)	C25—C24—C23	120.7 (3)
C1—N1—Cu1	96.93 (16)	C25—C24—H24	119.7
C4—N2—C1	115.3 (3)	C23—C24—H24	119.7
N2—C1—N1	124.4 (3)	C26—C25—C24	120.1 (3)
N2—C1—S1	121.1 (2)	C26—C25—H25	119.9
N1—C1—S1	114.42 (19)	C24—C25—H25	120.0
N1—C2—C3	121.6 (3)	C25—C26—C27	120.2 (3)
N1—C2—H2	119.2	C25—C26—H26	119.9
С3—С2—Н2	119.2	С27—С26—Н26	119.9
C4—C3—C2	116.0 (3)	C26—C27—C28	120.0 (3)
C4—C3—H3	122.0	С26—С27—Н27	120.0
C2—C3—H3	122.0	C28—C27—H27	120.0
N2—C4—C3	125.2 (3)	C27—C28—C23	120.8 (3)
N2—C4—H4	117.4	C27—C28—H28	119.6

C3—C4—H4	117.4	C23—C28—H28	119.6
C10—C5—C6	118.6 (3)	C34—C29—C30	118.1 (3)
C10—C5—P1	123.3 (2)	C34—C29—P2	118.7 (2)
C6—C5—P1	118.1 (2)	C30—C29—P2	122.9 (2)
C5—C6—C7	120.5 (3)	C29—C30—C31	120.8 (3)
С5—С6—Н6	119.8	С29—С30—Н30	119.6
С7—С6—Н6	119.8	С31—С30—Н30	119.6
C8—C7—C6	119.2 (4)	C32—C31—C30	120.8 (3)
С8—С7—Н7	120.4	C32—C31—H31	119.6
С6—С7—Н7	120.4	С30—С31—Н31	119.6
C9—C8—C7	120.5 (4)	C31—C32—C33	118.7 (3)
С9—С8—Н8	119.8	C31—C32—H32	120.6
С7—С8—Н8	119.8	С33—С32—Н32	120.6
C8—C9—C10	120.6 (4)	C32—C33—C34	121.3 (3)
С8—С9—Н9	119.7	С32—С33—Н33	119.4
С10—С9—Н9	119.7	С34—С33—Н33	119.4
C5-C10-C9	120.6 (3)	C29—C34—C33	120.2 (3)
C5-C10-H10	119.7	С29—С34—Н34	119.9
C9—C10—H10	119.7	С33—С34—Н34	119.9
C16—C11—C12	117.9 (3)	C40—C35—C36	117.9 (3)
C16—C11—P1	124.8 (2)	C40—C35—P2	117.9 (2)
C12—C11—P1	117.3 (2)	C36—C35—P2	124.0 (2)
C13—C12—C11	120.5 (3)	C35—C36—C37	120.2 (3)
C13—C12—H12	119.7	С35—С36—Н36	119.9
C11—C12—H12	119.7	С37—С36—Н36	119.9
C14—C13—C12	120.3 (3)	C38—C37—C36	120.8 (3)
C14—C13—H13	119.9	С38—С37—Н37	119.6
C12—C13—H13	119.9	С36—С37—Н37	119.6
C15—C14—C13	119.8 (3)	C37—C38—C39	119.2 (3)
C15—C14—H14	120.1	С37—С38—Н38	120.4
C13—C14—H14	120.1	С39—С38—Н38	120.4
C14—C15—C16	120.5 (3)	C38—C39—C40	120.7 (3)
C14—C15—H15	119.8	С38—С39—Н39	119.7
C16—C15—H15	119.8	С40—С39—Н39	119.7
C11—C16—C15	121.0 (3)	C39—C40—C35	121.1 (3)
C11—C16—H16	119.5	C39—C40—H40	119.4
C15—C16—H16	119.5	C35—C40—H40	119.4
C22—C17—C18	118.3 (3)		
N1—Cu1—S1—C1	-4.01 (11)	C11—C12—C13—C14	2.3 (5)
P2—Cu1—S1—C1	-114.09 (9)	C12-C13-C14-C15	-2.0 (6)
P1—Cu1—S1—C1	93.93 (9)	C13-C14-C15-C16	0.6 (6)
N1—Cu1—P1—C11	-89.40 (11)	C12-C11-C16-C15	-0.1 (4)
P2—Cu1—P1—C11	49.62 (10)	P1-C11-C16-C15	177.0 (2)
S1—Cu1—P1—C11	-162.77 (10)	C14—C15—C16—C11	0.4 (5)
N1—Cu1—P1—C17	150.64 (12)	C11—P1—C17—C22	-79.2 (2)
P2—Cu1—P1—C17	-70.34 (10)	C5—P1—C17—C22	173.5 (2)
S1—Cu1—P1—C17	77.26 (10)	Cu1—P1—C17—C22	45.4 (2)
N1—Cu1—P1—C5	28.35 (12)	C11—P1—C17—C18	101.6 (2)
P2—Cu1—P1—C5	167.37 (10)	C5—P1—C17—C18	-5.7 (3)

S1—Cu1—P1—C5	-45.03 (11)	Cu1—P1—C17—C18	-133.8 (2)
N1—Cu1—P2—C23	-172.61 (11)	C22-C17-C18-C19	-0.3 (4)
P1—Cu1—P2—C23	52.16 (10)	P1-C17-C18-C19	178.9 (2)
S1—Cu1—P2—C23	-95.24 (9)	C17—C18—C19—C20	0.3 (5)
N1—Cu1—P2—C35	66.51 (12)	C18—C19—C20—C21	0.2 (6)
P1—Cu1—P2—C35	-68.72 (10)	C19—C20—C21—C22	-0.7 (6)
S1—Cu1—P2—C35	143.87 (10)	C18—C17—C22—C21	-0.1 (4)
N1—Cu1—P2—C29	-54.66 (12)	P1-C17-C22-C21	-179.4 (2)
P1—Cu1—P2—C29	170.11 (10)	C20—C21—C22—C17	0.6 (5)
S1—Cu1—P2—C29	22.70 (10)	C35—P2—C23—C28	-11.3 (3)
P2—Cu1—N1—C2	-79.7 (4)	C29—P2—C23—C28	97.8 (3)
P1—Cu1—N1—C2	64.5 (4)	Cu1—P2—C23—C28	-137.4 (2)
S1—Cu1—N1—C2	173.5 (4)	C35—P2—C23—C24	169.1 (2)
P2—Cu1—N1—C1	111.82 (14)	C29—P2—C23—C24	-81.8 (2)
P1—Cu1—N1—C1	-104.06 (15)	Cu1—P2—C23—C24	43.0 (2)
S1—Cu1—N1—C1	5.01 (14)	C28—C23—C24—C25	-0.3 (4)
C4—N2—C1—N1	0.2 (5)	P2-C23-C24-C25	179.4 (2)
C4-N2-C1-S1	179.3 (3)	C23—C24—C25—C26	1.7 (5)
C_{2} N1 $-C_{1}$ N2	-0.7(4)	$C_{24} - C_{25} - C_{26} - C_{27}$	-2.1(6)
Cu1-N1-C1-N2	171 9 (2)	$C_{25} = C_{26} = C_{27} = C_{28}$	11(6)
$C_2 = N_1 = C_1 = S_1$	-1798(2)	$C_{26} = C_{27} = C_{28} = C_{23}$	0.3(5)
Cu1-N1-C1-S1	-7.21(19)	$C_{24} = C_{23} = C_{28} = C_{27}$	-0.7(4)
Cu1 = S1 = C1 = N2	-1726(2)	$P_2 = C_{23} = C_{28} = C_{27}$	1797(2)
Cu1 = S1 = C1 = N1	6 50 (17)	$C_{23} = P_{2} = C_{29} = C_{34}$	161.5(3)
C1 - N1 - C2 - C3	0.5 (5)	C_{35} P_{2} C_{29} C_{34}	-89.5(3)
Cu1 - N1 - C2 - C3	-1666(3)	Cu1 - P2 - C29 - C34	369(3)
N1 - C2 - C3 - C4	01(6)	$C_{23} = P_{2} = C_{29} = C_{30}$	-12.7(3)
$C1 - N^2 - C4 - C^3$	0.5 (6)	$C_{25} = P_{2} = C_{29} = C_{30}$	96.4 (3)
$C_{2} - C_{3} - C_{4} - N_{2}^{2}$	-0.6(6)	Cu1 - P2 - C29 - C30	-1373(2)
C_{11} = P1 = C5 = C10	-139(3)	$C_{34} = C_{29} = C_{30} = C_{31}$	18(5)
C_{17} P1 C_{5} C_{10}	93.9(2)	P_{2}^{2} C_{2}^{2} C_{3}^{2} C_{3}^{2} C_{3}^{1}	1.6(3)
C_{11} = P1 = C5 = C10	-1369(2)	$C_{29} = C_{30} = C_{31} = C_{32}^{32}$	0.5(5)
C_{11} = P1 = C5 = C6	164.6 (2)	$C_{22} = C_{31} = C_{32} = C_{33}$	-1.9(6)
C17—P1—C5—C6	-87.7(2)	$C_{31} - C_{32} - C_{33} - C_{34}$	1.7(0)
C_{11} = P1 = C5 = C6	41 5 (3)	C_{30} C_{29} C_{34} C_{33}	-29(5)
$C_{10} - C_{5} - C_{6} - C_{7}$	-0.4(5)	$P_{2}^{2} = C_{2}^{2} = C_{3}^{2} + C_{3}^{2}$	-1773(3)
P1	-1790(3)	$C_{32} = C_{33} = C_{34} = C_{29}$	16(6)
$C_{5} - C_{6} - C_{7} - C_{8}$	0.8 (6)	$C_{32} = C_{35} = C_{35} = C_{40}$	-734(3)
C_{6}^{-} C_{7}^{-} C_{8}^{-} C_{9}^{0}	-1.3(6)	$C_{29} = P_2 = C_{35} = C_{40}$	179 3 (2)
C7 - C8 - C9 - C10	1.5 (6)	$C_{11} = P_{12} = C_{35} = C_{40}$	528(3)
$C_{6} = C_{5} = C_{10} = C_{9}$	0.5(4)	C_{23} P2 C_{35} C36	1113(3)
P1C5C10C9	178.9(2)	$C_{29} = P_2 = C_{35} = C_{36}$	40(3)
$C_{8} = C_{9} = C_{10} = C_{5}$	-10(5)	$C_{11} = P_{12} = C_{35} = C_{36}$	-1225(2)
C_{17} = P1 = C_{11} = C_{16}	1.0(3)	C40-C35-C36-C37	-1.6(5)
C5-P1-C11-C16	109 6 (3)	P2-C35-C36-C37	173 7 (2)
C_{11} = P1 = C11 = C16	-125 6 (2)	$C_{35} = C_{36} = C_{37} = C_{38}$	0.6(5)
C_{17} P1 $-C_{11}$ $-C_{12}$	178 9 (2)	$C_{36} - C_{37} - C_{38} - C_{39}$	15(6)
C_{5} P1 C_{11} C_{12}	-732(2)	C_{37} C_{38} C_{39} C_{40}	-26(6)
C_{11} = P1 = C11 = C12	51.5 (2)	C_{38} C_{39} C_{40} C_{35}	2.0 (0)
Cu. 11 C11 C12	(-)		

C16—C11—C12—C13 P1—C11—C12—C13	-1.2 (5) -178.6 (3)	C36—C35—C40—C39 P2—C35—C40—C39		0.6 (5) -175.0 (3)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C6—H6…S1	0.93	2.83	3.661 (3)	150
C13—H13····S1 ⁱ	0.93	2.73	3.613 (4)	159
Symmetry codes: (i) x -1, y , z .				

Fig. 2

